
PyPads
Release 0.1.20

Jun 22, 2020

Install PyPads:

1 Install PyPads 3
1.1 How To Install . 3

2 Getting started 7
2.1 Getting started with PyPads . 8

3 PyPads 17
3.1 PyPads application class . 17
3.2 Logging functions . 19
3.3 Utilities . 20
3.4 Mapping Files . 20

4 Extensions 25
4.1 Extensions and plugins . 25

5 Related Projects 27
5.1 Related Projects . 27

6 About Us 29
6.1 About Us . 29

Python Module Index 31

Index 33

i

ii

PyPads, Release 0.1.20

Building on the MLFlow toolset, PyPaDS aims to extend the existing tracking functionality, make logging as easy as
possible for the user. The production of structured results is an additional goal of the extension.

Install PyPads: 1

https://github.com/padre-lab-eu/pypads

PyPads, Release 0.1.20

2 Install PyPads:

CHAPTER 1

Install PyPads

Logging your experiments manually can be overwhelming and exhaustive? PyPads is a tool to help automate logging
as much information as possible by tracking the libraries of your choice.

• Installing PyPads: With pip | From source

1.1 How To Install

There are different ways to install pypads:

• Install the latest official release. This is the best approach for most users. It will provide a stable version and
pre-built packages are available for most platforms.

• Building the package from source. This is best for users who want the latest features and aren’t afraid of running
brand-new code. This is also needed for users who wish to contribute to the project.

1.1.1 Installing the latest release with pip

The lastest stable version of pypads can be downloaded and installed from PyPi:

pip install pypads

Note that in order to avoid potential conflicts with other packages it is strongly recommended to use a virtual environ-
ment, e.g. python3 virtualenv (see python3 virtualenv documentation) or conda environments.

Using an isolated environment makes possible to install a specific version of pypads and its dependencies indepen-
dently of any previously installed Python packages. In particular under Linux is it discouraged to install pip packages
alongside the packages managed by the package manager of the distribution (apt, dnf, pacman. . .).

Note that you should always remember to activate the environment of your choice prior to running any Python com-
mand whenever you start a new terminal session.

3

https://pypi.org/project/pypads/
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

PyPads, Release 0.1.20

Warning: Pypads requires Python 3.6 or newer.

1.1.2 Installing pypads from source

This section introduces how to install the master branch of pypads. This can be done by building from source.

Building from source

Building from source is required to work on a contribution (bug fix, new feature, code or documentation improvement).

1. Use Git to check out the latest source from the pypads repository on Github.:

git clone git@github.com:padre-lab-eu/pypads.git # add --depth 1 if your
→˓connection is slow
cd pypads

If you plan on submitting a pull-request, you should clone from your fork instead.

2. Install poetry tool for dependency managenment for your platform. See instructions in the Official documenta-
tion.:

pip install poetry

3. Optional (but recommended): create and activate a dedicated virtualenv or conda environment.

4. Build the project with poetry, this will generate a whl and a tar file under dist/:

poetry build

5. Install pypads using one of the two generated files:

pip install dist/pypads-X.X.X.tar.gz
OR
pip install dist/pypads-X.X.X-py3-none-any.whl

If the package is available on pypi but can’t be found with poetry you might want to delete your local poetry cache :

poetry cache clear –all pypi

Dependencies

Runtime dependencies

Pypads requires the following dependencies both at build time and at runtime:

• Python (>= 3.6),

• cloudpickle (>= 1.3.3),

• mlflow (>= 1.6.0),

• boltons (>= 19.3.0),

• loguru (>=0.4.1)

Those dependencies are automatically installed by poetry if they were missing when building pypads from source.

4 Chapter 1. Install PyPads

https://git-scm.com/
https://github.com/padre-lab-eu/pypads
https://python-poetry.org/docs/#installation
https://python-poetry.org/docs/#installation
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

PyPads, Release 0.1.20

Build dependencies

Building PyPads also requires:

• Poetry >= 0.12.

Test dependencies

Running tests requires:

• pytest >= 5.2.5,

• scikit-learn >= 0.21.3,

• tensorflow >= 2.0.0b1,

• psutil >= 5.7.0,

• networkx >= 2.4,

• keras >= 2.3.1.

Some tests also require numpy.

1.1. How To Install 5

https://numpy.org/

PyPads, Release 0.1.20

6 Chapter 1. Install PyPads

CHAPTER 2

Getting started

Learn more about how to use pypads, configuring your tracking events and hooks, mapping your custom logging
function and some of the core features of PyPads.

• Usage example Decision Tree Iris classification

• Mapping file example for Scikit-learn A mapping file is where we define the classes and functions to be
tracked from the library of our choice. It includes the defined hooks.

• Hooks and events

– Events are defined primarily by listeners which are, in our case, hooks. When triggered, the corre-
sponding loggers are called. Logging functions are linked to these events via a mapping dictionary
passed to the base class.

– Hooks help the user to define what triggers those events (e.g. what functions or classes should trigger
a specific event).

• Loggers Logging functions are functions called around when any tracked method or class triggers their cor-
responding event. Mapping events to logging functions is done by passing a dictionary mapping as a
parameter to the PyPads class.

The following tables show the default loggers of pypads.

• Event Based loggers

7

PyPads, Release 0.1.20

Logger Event Hook Description
LogInit init ‘pypads_init’ Debugging purposes
Log log ‘pypads_log’ Debugging purposes
Parameters parameters ‘pypads_fit’ tracks parameters of the tracked

function call
Cpu,Ram,Diskhardware ‘pypads_fit’ track usage information, properties

and other info on CPU, Memory
and Disk.

Input input ‘pypads_fit’ tracks the input parameters of the
current tracked function call.

Output output ‘pypads_predict’, ‘pypads_fit’ Logs the output of the current
tracked function call.

Metric metric ‘pypads_metric’ tracks the output of the tracked
metric function.

PipelineTrackerpipeline ‘pypads_fit’,’pypads_predict’,
‘pypads_transform’, ‘py-
pads_metrics’

tracks the workflow of execution
of the different pipeline elements
of the experiment.

• Pre/Post run loggers

Logger Pre/Post Description
IGit Pre Source code management and tracking
ISystem Pre System information (os,version,machine. . .)
ICpu Pre Cpu information (Nbr of cores, max/min frequency)
IRam Pre Memory information (Total RAM, SWAP)
IDisk Pre Disk information (disk total space)
IPid Pre Process information (ID, command, cpu usage, memory

usage)
ISocketInfo Pre Network information (hostname, ip address)
IMacAddress Pre Mac address

2.1 Getting started with PyPads

PyPads is a tracking framework for your python programs. It implements an infrastructure featuring the possibilities
for:

• Community driven mapping files

• Logging injection by importlib extension

• Timekeeping

• Full access to the current state in logging functions

• Prefabricated tracking functions and formats

• Data and control flow manipulation with actuators

• Run based data caching for loggers

The framework was developed for machine learning experiments and is based on mlflow. The main focus for PyPads
is based in its ulterior, but pythonic manner of use. PyPads aims to deliver a way to harmonize results of a multitude
of libraries in a structured way, while stepping out of the way if needed. Most dependencies of PyPads are to be
considered as optional and are only used to extend on more sophisticated logging functions.

8 Chapter 2. Getting started

PyPads, Release 0.1.20

In its core app, PyPads allows for registering plugin extensions. These can be used to define packages introducing new
loggers, validators, actuators, decorators etc.

2.1.1 Quick start

Install PyPads assuming Python 3 is already installed:

$ pip install pypads

Usage

Activating PyPads for tracking in its default setting is as easy as adding two lines to your experiment.

A simple example looks like the following.

from pypads.app.base import PyPads
PyPads(autostart=True)

An example
from sklearn import datasets, metrics
from sklearn.tree import DecisionTreeClassifier

load the iris datasets
dataset = datasets.load_iris()

fit a model to the data
model = DecisionTreeClassifier()
model.fit(dataset.data, dataset.target) # pypads will track the parameters, output,
→˓and input of the model fit function.
get the predictions
predicted = model.predict(dataset.data) # pypads will track only the output of the
→˓model predict function.

Results

By default results can be found in the .mlruns folder in the home directory of the executing user. While this can be
changed when initializing the app, you can also specify the environment variable MLFLOW_PATH to define a custom
location.

2.1.2 Concepts

PyPads includes a set of concepts, of which some are to be followed because of technical reasons, while others only
impose semantical meaning.

Actuators

Actuators are features of PyPads manipulating experiments. When using an actuator the result of the experiment
may be or is impacted. Actuators can include changes to the underlying machine learning code, setup and more. An
exemplary actuator is an actuator enforcing a random seed setup. Custom, new or other actuators can be added to an
IActuators plugin exposing them to PyPads.

2.1. Getting started with PyPads 9

PyPads, Release 0.1.20

@actuator
def set_random_seed(self, seed=None):

Set seed if needed
if seed is None:

import random
Numpy only allows for a max value of 2**32 - 1
seed = random.randrange(2 ** 32 - 1)

self.pypads.cache.run_add('seed', seed)

from pypads.injections.analysis.randomness import set_random_seed
set_random_seed(seed)

To call an actuator you can use the app.

from pypads.app.base import PyPads
tracker = PyPads(autostart=True)
tracker.actuators.set_random_see(seed=1)

API

The PyPads API delivers standard functionality of PyPads. This also pipes some of mlflow features. You can start, stop
runs, log artifacts, metrics or parameters, set tags and write meta information about them. Additionally the PyPads
API inroduces setup and teardown (also called pre and post run) functions to be called and also to manually mark
functions for tracking. A full documentation can be found here. To call the api you can use the app.

from pypads.app.base import PyPads
tracker = PyPads(autostart=True)
tracker.api.set_tag("foo", "bar")

Validators

Validators are to be used if the experimental status or code has to be checked on some properties. These should
normally not log anything, but a validation report. A validation report should be an optional tag or at max a text file.
In general validators should inform the user on runtime about errors and problems. It is planned to add the possibility
to interrupt an execution if validators fail in the future. Some validators will be logging functions bound to library
functions. An examplary validator which will want to be bound to the usage of pytorch is the determinism check for
pytorch.

@validator
def determinism(self):

check_determinism()

To call the api you can use the app.

from pypads.app.base import PyPads
tracker = PyPads(autostart=True)
tracker.validators.set_tag("foo", "bar")

Setup / Teardown functions

Setup or teardown functions are to be called when a run starts or ends. These mostly are used to log meta information
about the experiment including data about git, hardware and the environment. A list of currently defined decorators
can be found here.

10 Chapter 2. Getting started

PyPads, Release 0.1.20

class ICpu(PreRunFunction):

@staticmethod
def _needed_packages():

return ["psutil"]

def _call(self, pads, *args, **kwargs):
import psutil
pads.api.set_tag("pypads.system.cpu.physical_cores", psutil.cpu_

→˓count(logical=False))
pads.api.set_tag("pypads.system.cpu.total_cores", psutil.cpu_count(logical=True))
freq = psutil.cpu_freq()
pads.api.set_tag("pypads.system.cpu.max_freq", f"{freq.max:2f}Mhz")
pads.api.set_tag("pypads.system.cpu.min_freq", f"{freq.min:2f}Mhz")

Configuring setup or teardown functions can be done via the app constructor or api.

from pypads.app.base import PyPads
tracker = PyPads(setup_fns=[ICpu()], autostart=True)
tracker.api.register_setup("custom_cpu", ICpu())

MappingFiles

Mapping files deliver hooks into libraries to trigger tracking functionality. They are written in yml and defining a
syntax to markup functions, classes and modules.

Decorators

Decorators can be used instead of a mapping file to denote hooks in code. Because most libraries are not to be changed
directly they are currently used sparingly. In PyPads defined decorators can be found here.

Logging functions

Logging functions are the generic functions performing tracking tasks bound to hooked functions of libraries. Every-
thing not fitting into other concepts is just called logging function. Following function would track the input to the
hooked function.

class Input(LoggingFunction):
"""
Function logging the input parameters of the current pipeline object function call.
"""

def __pre__(self, ctx, *args, _pypads_write_format=WriteFormats.pickle, _pypads_env:
→˓LoggingEnv, **kwargs):

"""
:param ctx:
:param args:
:param _pypads_write_format:
:param kwargs:
:return:
"""
for i in range(len(args)):

arg = args[i]

(continues on next page)

2.1. Getting started with PyPads 11

PyPads, Release 0.1.20

(continued from previous page)

name = os.path.join(_pypads_env.call.to_folder(),
"args",
str(i) + "_" + str(id(_pypads_env.callback)))

try_write_artifact(name, arg, _pypads_write_format)

for (k, v) in kwargs.items():
name = os.path.join(_pypads_env.call.to_folder(),

"kwargs",
str(k) + "_" + str(id(_pypads_env.callback)))

try_write_artifact(name, v, _pypads_write_format)

Configuring logging functions can be achieved by providing mappings to the constructor of the app. Mapping files
provide hooks (generally prepended by “pypads” in their naming) and logging functions are mapped to events. A hook
can subsequently trigger multiple events and thus logging functions. To pass an event to function mapping a simple
dict can be used.

from pypads.app.base import PyPads
event_function_mapping = {

"parameters": Parameters(),
"output": Output(_pypads_write_format=WriteFormats.text.name),
"input": Input(_pypads_write_format=WriteFormats.text.name)

}
tracker = PyPads(events=event_function_mapping, autostart=True)

Additionally a hook to event mapping can be defined.

from pypads.app.base import PyPads
hook_event_mapping = {

"parameters": {"on": ["pypads_fit"]},
"output": {"on": ["pypads_fit", "pypads_predict"]},
"input": {"on": ["pypads_fit"], "with": {"_pypads_write_format": WriteFormats.

→˓text.name}},
}
tracker = PyPads(hooks=hook_event_mapping, autostart=True)

Defining hooks can be done via api, mappings, mapping files or decorators. Decorators are a sensible approach for
local custom code.

from pypads.app.base import PyPads
tracker = PyPads(autostart=True)

@tracker.decorator.track(event="pypads_fit")
def fit_function_to_track(foo: str):

return foo + "bar"

The same holds true for api based tracking.

from pypads.app.base import PyPads
tracker = PyPads(autostart=True)

def fit_function_to_track(foo: str):
return foo + "bar"

tracker.api.track(ctx=get_class_that_defined_method(fit_function_to_track), fn=fit_
→˓function_to_track, hooks=["pypads_fit"])

Mapping files or mappings are a more permanent, shareable and modular approach.

12 Chapter 2. Getting started

PyPads, Release 0.1.20

from pypads.app.base import PyPads
serialized_mapping = """

metadata:
author: "Thomas Weißgerber"
version: "0.0.1"
library:

name: "test_foo"
version: "0.1"

mappings:
:my_package.my_class.fit_function_to_track:

events: "pypads_fit"
"""

tracker = PyPads(mapping=SerializedMapping("test_foo", serialized_mapping),
→˓autostart=True)

def fit_function_to_track(foo: str):
return foo + "bar"

Check points

Check points are currently not implemented. They will introduce a structured way to denote cache able states. By
defining check points we hope to be able to define marks from which an experiment can be rerun in the future.

2.1.3 Examples

Sklearn DecisionTree example

Following shows how PyPads can be used to track the parameters, input and output of a sklearn experiment.

define the configuration, in this case we want to track the parameters,
outputs and the inputs of each called function included in the hooks (pypads_fit,
→˓pypads_predict)
events = {

"parameters": {"on": ["pypads_fit"]},
"output": {"on": ["pypads_fit", "pypads_predict"]},
"input": {"on": ["pypads_fit"]}

}
A simple initialization of the class will activate the tracking
PyPads(events=events)

An example
from sklearn import datasets, metrics
from sklearn.tree import DecisionTreeClassifier

load the iris datasets
dataset = datasets.load_iris()

fit a model to the data
model = DecisionTreeClassifier()
model.fit(dataset.data, dataset.target) # pypads will track the parameters, output,
→˓and input of the model fit function.
get the predictions

(continues on next page)

2.1. Getting started with PyPads 13

PyPads, Release 0.1.20

(continued from previous page)

predicted = model.predict(dataset.data) # pypads will track only the output of the
→˓model predict function.

The used hooks for each event are defined in the mapping yml file where each event includes the functions to listen to.

Mapping file example

For the previous example, the sklearn mapping yml file would look like the following.

metadata:
author: "Thomas Weißgerber"
version: "0.1.0"
library:
name: "sklearn"
version: "0.19.1"

mappings:
!!python/pPath sklearn:
!!python/pPath base.BaseEstimator:
data:
concepts: ["algorithm"]

!!python/pPath __init__:
hooks: "pypads_init"

!!python/rSeg (fit|.fit_predict|fit_transform)$:
hooks: "pypads_fit"

!!python/rSeg (fit_predict|predict|score)$:
hooks: "pypads_predict"

!!python/rSeg (fit_transform|transform)$:
hooks: "pypads_transform"

For example, “pypads_fit” is an event listener on any fit, fit_predict and fit_transform function call made by any
tracked class with those methods.

Defining a hook for an event

A hook can be defined in the mapping file via the “hooks” attribute. It is composed of the given name and path defined
by the keys in the yml file. Muliple hooks can use the same name and therefore trigger the same functions.

Define an event

Once the hooks are defined, they are then linked to the events we want them to trigger. Following the example below,
the hook pypads_metric will be linked to an event we call Metrics for example. This is done via passing a dictionary
as the parameter config to the PyPads class

events = {
"Metrics" : {"on": ["pypads_metrics"]}

}

PyPads loggers

PyPads has a set of built-in logging functions that are mapped by default to some pre-defined events. Check the default
setting of PyPads here. The user can also define custom logging functions for custom events. Details on how to do

14 Chapter 2. Getting started

PyPads, Release 0.1.20

that can be found here.

2.1.4 External resources

Currently there are unfortunately not too many external resources available fo PyPads. Additional examples are to be
added in the next steps of the road map. You can find an IPython Notebook and an Code example on these repositories.

TODO Please add links to two repositories with example code (We can use the stuff for the data science lab)

2.1. Getting started with PyPads 15

PyPads, Release 0.1.20

16 Chapter 2. Getting started

CHAPTER 3

PyPads

3.1 PyPads application class

This class represents the app. To start and activate the tracking of your modules, classes and functions, the app class
has to be instantiated.

Warning: It is recommended to initialize the tracking before importing the modules to be tracked. While
extending the importlib and reloading the modules may work sometimes doing so may result in unforeseen issues.

3.1.1 Default settings

The app includes default values for configuration, hook/event mappings, event/function mappings etc.

Default Anchors

Anchors are names for repeating types of hooks. Fit functions for example are existing on multiple libraries.

DEFAULT_ANCHORS = [Anchor("pypads_init", "Used if a tracked concept is initialized."),
Anchor("pypads_fit", "Used if an model is fitted to data."),
Anchor("pypads_predict", "Used if an model predicts something."),
Anchor("pypads_metric", "Used if an metric is compiled."),
Anchor("pypads_log", "Used to only log a call.")]

Default Event Types

Event types represent strategies to react to an anchor / hook.

17

PyPads, Release 0.1.20

DEFAULT_EVENT_TYPES = [EventType("parameters", "Track the parameters for given model.
→˓"),

EventType("output", "Track the output of the function."),
EventType("input", "Track the input of the function."),
EventType("hardware", "Track current hardware load on function

→˓execution."),
EventType("metric", "Track a metric."),
EventType("autolog", "Activate mlflow autologging."),
EventType("pipeline", "Track a pipeline step."),
EventType("log", "Log the call to console."),
EventType("init", "Log the tracked class init to console.")]

Default Config

The configuration for PyPads

DEFAULT_CONFIG = {
"track_sub_processes": False, # Activate to track spawned subprocesses by

→˓extending the joblib
"recursion_identity": False, # Activate to ignore tracking on recursive calls of

→˓the same function with the same mapping
"recursion_depth": -1, # Limit the tracking of recursive calls
"log_on_failure": True, # Log the stdout / stderr output when the execution of

→˓the experiment failed
"include_default_mappings": True # Include the default mappings additionally to

→˓the passed mapping if a mapping is passed
}

Default Hook Mapping

The hook mapping, maps hooks (anchors) to the events (event types).

DEFAULT_HOOK_MAPPING = {
"init": {"on": ["pypads_init"]},
"parameters": {"on": ["pypads_fit"]},
"hardware": {"on": ["pypads_fit"]},
"output": {"on": ["pypads_fit", "pypads_predict"]},
"input": {"on": ["pypads_fit"], "with": {"_pypads_write_format": WriteFormats.

→˓text.name}},
"metric": {"on": ["pypads_metric"]},
"pipeline": {"on": ["pypads_fit", "pypads_predict", "pypads_transform", "pypads_

→˓metric"]},
"log": {"on": ["pypads_log"]}

}

Default Event Mapping

Defines which logging functions should be run for events.

DEFAULT_LOGGING_FNS = {
"parameters": Parameters(),
"output": Output(_pypads_write_format=WriteFormats.text.name),
"input": Input(_pypads_write_format=WriteFormats.text.name),

(continues on next page)

18 Chapter 3. PyPads

PyPads, Release 0.1.20

(continued from previous page)

"hardware": [Cpu(), Ram(), Disk()],
"metric": Metric(),
"autolog": MlflowAutologger(),
"pipeline": PipelineTracker(_pypads_pipeline_type="normal", _pypads_pipeline_

→˓args=False),
"log": Log(),
"init": LogInit()

}

3.2 Logging functions

3.2.1 LoggingFunction base class

To develop custom loggers, we need to write a class that inherits from the base class LoggingFunction. Then, those
custom loggers can be mapped to events of the user choice in the parameter mapping of the PyPads class.

3.2.2 Pre and Post run loggers

Another type of logging functions supported by Pypads is the pre/post run loggers which are executed before and after
the run execution respectively.

• Pre Run loggers

class pypads.app.injections.run_loggers.PreRunFunction(*args, **kwargs)
This class should be used to define new pre run functions

_call(pads, *args, **kwargs)
Function where to add you custom code to execute before starting or ending the run.

Parameters pads – the current instance of PyPads.

_check_dependencies()
Raise error if dependencies are missing.

static _needed_packages()
Overwrite this to provide your package names. :return: List of needed packages by the logger.

• Post Run loggers

class pypads.app.injections.run_loggers.PostRunFunction(*args, **kwargs)
This class should be used to define new post run functions

_call(pads, *args, **kwargs)
Function where to add you custom code to execute before starting or ending the run.

Parameters pads – the current instance of PyPads.

_check_dependencies()
Raise error if dependencies are missing.

static _needed_packages()
Overwrite this to provide your package names. :return: List of needed packages by the logger.

3.2. Logging functions 19

PyPads, Release 0.1.20

3.2.3 Mlflow autolog (experimental)

Pypads also support mlflow autologging functionalities. More on that can be found at MLflow.

class pypads.injections.loggers.mlflow.mlflow_autolog.MlflowAutologger(*args,
order=-
1,
**kwargs)

MlflowAutologger is the intergration of the mlflow autologging functionalities into PyPads tracking system.

__call_wrapped__(ctx, *args, _args, _kwargs, _pypads_autologgers=None, _pypads_env=<class
’pypads.injections.analysis.call_tracker.LoggingEnv’>, **kwargs)

Note: Experimental: This method may change or be removed in a future release without warning.

Function used to enable autologgers of mlflow.

identity
Return the identity of the logger. This should be unique for the same functionality across multiple versions.
:return:

3.3 Utilities

pypads.utils.util.dict_merge(*dicts)
Simple merge of dicts :param dicts: :return:

pypads.utils.util.dict_merge_caches(*dicts)
Merge two dicts. Entries are overwritten if not mergeable. Cache is supported. :param dicts: dicts to merge
:return:

pypads.utils.util.get_class_that_defined_method(meth)
Try to find the class / module which defined given method. :param meth: Method for which we search an origin.
:return:

pypads.utils.util.inheritors(clazz)
Function getting all subclasses of given class. :param clazz: Clazz to search for :return:

pypads.utils.util.is_package_available(name)
Check if given package is available. :param name: Name of the package :return:

pypads.utils.util.local_uri_to_path(uri)
Convert URI to local filesystem path.

pypads.utils.util.sizeof_fmt(num, suffix=’B’)
Get the mem / disk size in a human readable way. :param num: :param suffix: :return:

pypads.utils.util.string_to_int(s)
Build a int from a given string. :param s: :return:

3.4 Mapping Files

PyPads using the concept of mapping files to track which functions should be logged. These files are written in YAML.
YAML (YAML Ain’t A Markup Language) is a human readable data serialization language. YAML has features such
as comments and anchors these features make it desirable.

20 Chapter 3. PyPads

https://mlflow.org/docs/latest/tracking.html#automatic-logging

PyPads, Release 0.1.20

The mapping file can be divided broadly into different parts like metadata, fragments and mappings. Each section
is explained in detail below. Following excerpts show possible mapping files. While the keras file uses implicit
syntax for the path matchers marked by a prepending :, the sklearn version depicts how to use YAML typing with
!!python/pPath, !!python/rSeg or !!python/pSeg.

metadata:
author: "Thomas Weißgerber"
version: "0.1.0"
library:
name: "keras"
version: "2.3.1"

mappings:
:keras.metrics.Metric:
hooks: ["pypads_metric"]
data:

concepts: ["keras classification metrics"]

:keras.engine.training.Model:
:__init__:

hooks: ["pypads_init"]
:{re:(fit|fit_generator)$}:

hooks: ["pypads_fit"]
:predict_classes:

hooks: ["pypads_predict"]

metadata:
author: "Thomas Weißgerber"
version: "0.1.0"
library:
name: "sklearn"
version: ">= 0.19.1"

fragments:
default_model:
!!python/pPath __init__:

hooks: "pypads_init"
!!python/rSeg (fit|.fit_predict|fit_transform)$:

hooks: "pypads_fit"
!!python/rSeg (fit_predict|predict|score)$:

hooks: "pypads_predict"
!!python/rSeg (fit_transform|transform)$:

hooks: "pypads_transform"

mappings:
!!python/pPath sklearn:
!!python/pPath base.BaseEstimator:
;default_model: ~
data:
concepts: ["algorithm"]

!!python/pPath metrics.classification:
!!python/rSeg .*:
hooks: "pypads_metric"
data:
concepts: ["Sklearn provided metric"]

!!python/pPath tree.tree.DecisionTreeClassifier:
;default_model: ~

(continues on next page)

3.4. Mapping Files 21

PyPads, Release 0.1.20

(continued from previous page)

data:
name: decision tree classifier
other_names: []
type: Classification
hyper_parameters:
model_parameters:

- name: split_quality
kind_of_value: "{'gini', 'entropy'}"
optional: 'True'
description: The function to measure the quality of a split.
default_value: "'gini'"
path: criterion

- name: splitting_strategy
kind_of_value: "{'best', 'random'}"
optional: 'True'
description: The strategy used to choose the split at each node.
default_value: "'best'"
path: splitter

- name: max_depth_tree
kind_of_value: integer
optional: 'True'
description: The maximum depth of the tree.
default_value: None
path: max_depth

- name: min_samples_split
kind_of_value: "{integer, float}"
optional: 'True'
description: The minimum number of samples required to split an

→˓internal node.
default_value: '2'
path: min_samples_split

- name: min_samples_leaf
kind_of_value: "{integer, float}"
optional: 'True'
description: The minimum number of samples required to be at a leaf

→˓node.
default_value: '1'
path: min_samples_leaf

- name: min_weight_fraction_leaf
kind_of_value: float
optional: 'True'
description: The minimum weighted fraction of the sum total of weights

→˓(of all
the input samples) required to be at a leaf node.

default_value: '1'
path: min_weight_fraction_leaf

- name: max_features
kind_of_value: "{integer, float, 'auto', 'sqrt', 'log2', None}"
optional: 'True'
description: The number of features to consider when looking for the

→˓best split.
default_value: None
path: max_features

- name: random_state
kind_of_value: "{integer, RandomState instance, None}"
optional: 'True'
description: The seed of the pseudo random number generator to use when

→˓shuffling (continues on next page)

22 Chapter 3. PyPads

PyPads, Release 0.1.20

(continued from previous page)

the data. If int, random_state is the seed used by the random number
→˓generator;

If RandomState instance, random_state is the random number generator;
→˓If None,

the random number generator is the RandomState instance used by np.
→˓random.

default_value: None
path: random_state

- name: max_leaf_nodes
kind_of_value: integer
optional: 'True'
description: Grow a tree with max_leaf_nodes in best-first fashion.
default_value: None
path: max_leaf_nodes

- name: min_impurity_decrease
kind_of_value: float
optional: 'True'
description: A node will be split if this split induces a decrease of

→˓the impurity
greater than or equal to this value.

default_value: '0'
path: min_impurity_decrease

- name: class_weight
kind_of_value: "{dict, list of dicts, 'balanced', None}"
optional: 'False'
description: Weights associated with classes.
default_value: None
path: class_weight

optimisation_parameters:
- name: presort
kind_of_value: "{boolean, 'auto'}"
optional: 'True'
description: Whether to presort the data to speed up the finding of

→˓best splits
in fitting.

default_value: "'auto'"
path: presort

execution_parameters: []

Metadata The metadata part contains information about the author, the mapping file version and the library informa-
tion. The mapping file version is required so that a change in the tracking functionalities can be easily traced
to the version of the mapping file. Even while having the same library version, a user can modify the mapping
file to track additional functions of the library or remove some tracking functionalities. Such changes need to be
handled to provide better experiment tracking and reproducibility. PyPads does this via versioning of the map-
ping file. Another tag called “library” contains information about the library which the mapping file addresses
such as the name of the library and the version of the library. This metadata section helps PyPads track different
versions of libraries without them having a conflict.

metadata:
author: "Thomas Weißgerber"
version: "0.1.0"
library:
name: "sklearn"
version: "0.19.1"

Fragments Repeated patterns in the library can be included in the fragments section of the mappings file. Fragments
allows users to link functions across classes. For example, in scikit-learn the fit function is a function for fitting

3.4. Mapping Files 23

PyPads, Release 0.1.20

the estimators. All classification/regression estimators will have a fit function. In such a scenario, the user does
not have to write mappings for each and every estimator. Instead, the user can add the function to the fragments
part and PyPads will automatically log those functions.

fragments:
default_model:
.__init__:

events: "pypads_init"
.{re:(fit|.fit_predict|fit_transform)$}:

events: "pypads_fit"

Mappings This part in the mapping file gives information to PyPads about the functions to track. In the example,
we use the sklearn base estimator to encompass all logging functionalities from a single point. The user can
add other classes as shown with the Decision Tree Classifier. By doing this the user also has to provide all the
hyperparameters so that PyPads knows what to track. For each hyperparameter the user also has to provide the
name of the hyperparameter, whether it is optional or not, its description and so forth.

3.4.1 Concepts

PyPads mapping files contain keys called concepts. When creating a main key in the mappings file, it could be anything
such as a metric, a dataset, splitting strategy, an algorithm and so forth. The concepts key present within the main key
links the main key to previously determined categories such as metric, dataset or algorithm to name a few. This helps
PyPads recognize what type the main key is and how to process it.

3.4.2 Notations

PyPads can accept different notations through the YAML parser. Users can use the power of regular expressions to
specify function groups that should trigger specific events. Here in the below given example, we hook all functions
in sklearn.metrics.classification to “pypads_metric”. We also inform PyPads that all functions of this form are an
instance of sklearn provided metrics using the concepts key.

mappings:
sklearn:
.metrics.classification.{re:.*}:

data:
concepts: ["Sklearn provided metric"]
events: "pypads_metric"

3.4.3 Adding a new mapping file

When a user wants to add their own mapping file, they have to follow the following steps # Create a YAML mapping
file in the path pypads/bindings/resources/mapping with the appropriate name and version number # Add a metadata
part containing information about the author, version of the mapping file and library # Add fragments if a general
function name is present. You can use regex to specify the patterns # Add mappings for metrics, datasets etc is they
are present # PyPads will pick up the information when it is restarted.

24 Chapter 3. PyPads

CHAPTER 4

Extensions

• PaDRe-Pads is a tool that builds on PyPads and add some semantics to the tracked data of Machine learning
experiments. See the padre-pads documentation.

4.1 Extensions and plugins

PyPads features a plugin system to extend its functionality. Currently following plugins are being developed.

pypads_padre Also called PadrePads introduces additional concepts of machine learning. While PyPads is fairly
unopinionated about what it is logging PadrePads tries to impose some structure.

pypads_onto (unreleased) Also called OntoPads introduces ontology mappings to pypads. It is based on the other
plugin PadrePads and will enable given concept unique references.

4.1.1 PadrePads

PadrePads builds upon pypads when it comes to tracking, but it also adds a layer of loggers that tracks semantic
information from experiments executions. The documentation for PadrePads can be found here.

25

https://github.com/padre-lab-eu/padre-pads
https://pypads.readthedocs.io/projects/padrepads/en/latest/

PyPads, Release 0.1.20

26 Chapter 4. Extensions

CHAPTER 5

Related Projects

• PyPadre is the predecessor of PadrePads. Its development has been discontinued.

5.1 Related Projects

PyPads was developed of some related projects. One of which was its predecessor PyPadre.

5.1.1 PyPaDRE

PyPaDRE was the original experimental project developed on the context of padre-lab to track machine learning
experiments. After identifying drawbacks in the basic architecture or pypadre the development on pypads was started.
The documentation for PyPaDRE can be found here.

27

https://pypadre.readthedocs.io/en/latest/

PyPads, Release 0.1.20

28 Chapter 5. Related Projects

CHAPTER 6

About Us

This work has been developed within the Data Science Chair of the University of Passau. It has been partially funded
by the Bavarian Ministry of Economic Affairs, Regional Development and Energy by means of the funding
programm “Internetkompetenzzentrum Ostbayern” as well as by the German Federal Ministry of Education
and Research in the project “Provenance Analytics” with grant agreement number 03PSIPT5C.

6.1 About Us

This work has been developed within the Data Science Chair of the University of Passau. It has been partially funded
by the Bavarian Ministry of Economic Affairs, Regional Development and Energy by means of the funding
programm “Internetkompetenzzentrum Ostbayern” as well as by the German Federal Ministry of Education
and Research in the project “Provenance Analytics” with grant agreement number 03PSIPT5C.

29

PyPads, Release 0.1.20

30 Chapter 6. About Us

Python Module Index

p
pypads.utils.util, 20

31

PyPads, Release 0.1.20

32 Python Module Index

Index

Symbols
__call_wrapped__() (py-

pads.injections.loggers.mlflow.mlflow_autolog.MlflowAutologger
method), 20

_call() (pypads.app.injections.run_loggers.PostRunFunction
method), 19

_call() (pypads.app.injections.run_loggers.PreRunFunction
method), 19

_check_dependencies() (py-
pads.app.injections.run_loggers.PostRunFunction
method), 19

_check_dependencies() (py-
pads.app.injections.run_loggers.PreRunFunction
method), 19

_needed_packages() (py-
pads.app.injections.run_loggers.PostRunFunction
static method), 19

_needed_packages() (py-
pads.app.injections.run_loggers.PreRunFunction
static method), 19

D
dict_merge() (in module pypads.utils.util), 20
dict_merge_caches() (in module py-

pads.utils.util), 20

G
get_class_that_defined_method() (in mod-

ule pypads.utils.util), 20

I
identity (pypads.injections.loggers.mlflow.mlflow_autolog.MlflowAutologger

attribute), 20
inheritors() (in module pypads.utils.util), 20
is_package_available() (in module py-

pads.utils.util), 20

L
local_uri_to_path() (in module py-

pads.utils.util), 20

M
MlflowAutologger (class in py-

pads.injections.loggers.mlflow.mlflow_autolog),
20

P
PostRunFunction (class in py-

pads.app.injections.run_loggers), 19
PreRunFunction (class in py-

pads.app.injections.run_loggers), 19
pypads.utils.util (module), 20

S
sizeof_fmt() (in module pypads.utils.util), 20
string_to_int() (in module pypads.utils.util), 20

33

	Install PyPads
	How To Install

	Getting started
	Getting started with PyPads

	PyPads
	PyPads application class
	Logging functions
	Utilities
	Mapping Files

	Extensions
	Extensions and plugins

	Related Projects
	Related Projects

	About Us
	About Us

	Python Module Index
	Index

